首页> 外文OA文献 >Realization of Three-Qubit Quantum Error Correction with Superconducting Circuits
【2h】

Realization of Three-Qubit Quantum Error Correction with Superconducting Circuits

机译:用超导体实现三Qubit量子误差校正   电路

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Quantum computers promise to solve certain problems exponentially faster thanpossible classically but are challenging to build because of their increasedsusceptibility to errors. Remarkably, however, it is possible to detect andcorrect errors without destroying coherence by using quantum error correctingcodes [1]. The simplest of these are the three-qubit codes, which map aone-qubit state to an entangled three-qubit state and can correct any singlephase-flip or bit-flip error of one of the three qubits, depending on the codeused [2]. Here we demonstrate both codes in a superconducting circuit byencoding a quantum state as previously shown [3,4], inducing errors on allthree qubits with some probability, and decoding the error syndrome byreversing the encoding process. This syndrome is then used as the input to athree-qubit gate which corrects the primary qubit if it was flipped. As thecode can recover from a single error on any qubit, the fidelity of this processshould decrease only quadratically with error probability. We implement thecorrecting three-qubit gate, known as a conditional-conditional NOT (CCNot) orToffoli gate, using an interaction with the third excited state of a singlequbit, in 63 ns. We find 85\pm1% fidelity to the expected classical action ofthis gate and 78\pm1% fidelity to the ideal quantum process matrix. Using it,we perform a single pass of both quantum bit- and phase-flip error correctionwith 76\pm0.5% process fidelity and demonstrate the predicted first-orderinsensitivity to errors. Concatenating these two codes and performing them on anine-qubit device would correct arbitrary single-qubit errors. When combinedwith recent advances in superconducting qubit coherence times [5,6], this maylead to scalable quantum technology.
机译:量子计算机有望比经典计算机以指数方式更快地解决某些问题,但由于其对错误的敏感性增加,因此构建起来具有挑战性。然而,值得注意的是,通过使用量子纠错码[1],可以检测和纠正错误而不会破坏相干性。其中最简单的是三个量子位代码,它们将一个量子位状态映射到纠缠的三个量子位状态,并且可以根据所使用的编码[2]来纠正三个量子位之一的任何单相翻转或位翻转误差。 。在这里,我们通过对量子状态进行编码来演示超导电路中的两种代码,如先前所示[3,4],以一定的概率在所有三个量子位上引入错误,并通过反转编码过程来解码错误校正子。然后将该校正子用作三量子位门的输入,该三量子位门在主量子位被翻转时会对其进行校正。由于代码可以从任何量子位上的单个错误中恢复,因此该过程的保真度应仅以错误概率二次方降低。我们使用与单量子位的第三激发态的相互作用在63 ns内实现了校正的三量子位门,称为条件条件非(CCNot)或托菲利门。我们发现该门的预期经典作用的保真度为85 \ pm1%,而理想量子过程矩阵的保真度为78 \ pm1%。使用它,我们以76 \ pm0.5%的处理保真度执行了量子比特和相移翻转误差校正的单次通过,并证明了预测的对误差的一阶不敏感性。连接这两个代码并在anine-qubit设备上执行它们将纠正任意单个qubit错误。当结合超导量子位相干时间的最新进展[5,6]时,这可能会导致可扩展的量子技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号